The chloroplast protein RPH1 plays a role in the immune response of Arabidopsis to Phytophthora brassicae.

نویسندگان

  • Khaoula Belhaj
  • Baiqing Lin
  • Felix Mauch
چکیده

Plant immune responses to pathogens are often associated with enhanced production of reactive oxygen species (ROS), known as the oxidative burst, and with rapid hypersensitive host cell death (the hypersensitive response, HR) at sites of attempted infection. It is generally accepted that the oxidative burst acts as a promotive signal for HR, and that HR is highly correlated with efficient disease resistance. We have identified the Arabidopsis mutant rph1 (resistance to Phytophthora 1), which is susceptible to the oomycete pathogen Phytophthora brassicae despite rapid induction of HR. The susceptibility of rph1 was specific for P. brassicae and coincided with a reduced oxidative burst, a runaway cell-death response, and failure to properly activate the expression of defence-related genes. From these results, we conclude that, in the immune response to P. brassicae, (i) HR is not sufficient to stop the pathogen, (ii) HR initiation can occur in the absence of a major oxidative burst, (iii) the oxidative burst plays a role in limiting the spread of cell death, and (iv) RPH1 is a positive regulator of the P. brassicae-induced oxidative burst and enhanced expression of defence-related genes. Surprisingly, RPH1 encodes an evolutionary highly conserved chloroplast protein, indicating a function of this organelle in activation of a subset of immune reactions in response to P. brassicae. The disease resistance-related role of RPH1 was not limited to the Arabidopsis model system. Silencing of the potato homolog StRPH1 in a resistant potato cultivar caused susceptibility to the late blight pathogen Phytophthora infestans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disease resistance of Arabidopsis to Phytophthora brassicae is established by the sequential action of indole glucosinolates and camalexin.

We have analysed the role of tryptophan-derived secondary metabolites in disease resistance of Arabidopsis to the oomycete pathogen Phytophthora brassicae. Transcript analysis revealed that genes encoding enzymes involved in tryptophan, camalexin and indole glucosinolate (iGS) biosynthesis are coordinately induced in response to P. brassicae. However, a deficiency in either camalexin or iGS acc...

متن کامل

Indolic secondary metabolites protect Arabidopsis from the oomycete pathogen Phytophthora brassicae.

The model plant Arabidopsis thaliana contains a large arsenal of secondary metabolites that are not essential in development but have important ecological functions in counteracting attacks of pathogens and herbivores. Preformed secondary compounds are often referred to as phytoanticipins and metabolites, that are synthesized de novo in response to biotic stress are known as phytoalexins. Camal...

متن کامل

Innate Immunity Plays a Key Role in Leishmania Infection: Implications for Vaccine Design

Neutrophils are part of the first line of immune response and are essential for resistance against a variety of pathogens. They professionally mediate direct killing of pathogens, recruit other phagocytes by specific chemokines, produce cytokines and interact with different immune cells to shape the adaptive response. Leishmania as an obligatory intracellular parasite has evolved to benefit thi...

متن کامل

The role of microRNAs and phytohormones in plant immune system

The plant-pathogen interaction is a multifactor process that may lead to resistance or susceptible responses of plant to pathogens. During the arms race between plant and pathogens, various biochemical, molecular and physiological events are triggered in plant cells such as ROS signaling, hormone activation and gene expression reprogramming. In plants, microRNAs (miRNAs) are key post-transcript...

متن کامل

The Impact of Immune Response on HTLV-I in HTLV-I-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP)

    Human T lymphotropic virus type I (HTLV-I) is a retrovirus which is associated with adult T cells leukaemia (ATL) and HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in a minority of HTLV-I-infected individuals. It is not clear why a minority of HTLV-I-infected individuals develop HAM/TSP and majority remains lifelong carriers. It seems that the interaction between the v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 58 2  شماره 

صفحات  -

تاریخ انتشار 2009